3.8 Article

Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex

Journal

NATURE STRUCTURAL BIOLOGY
Volume 10, Issue 3, Pages 175-181

Publisher

NATURE AMERICA INC
DOI: 10.1038/nsb895

Keywords

-

Ask authors/readers for more resources

The second messenger cAMP stimulates transcription with burst-attenuation kinetics that mirror the PKA-dependent phosphorylation and subsequent protein phosphatase 1 (PP1)-mediated dephosphorylation of the cAMP responsive element binding protein (CREB) at Ser133. Phosphorylation of Ser133 promotes recruitment of the co-activator histone acetylase (HAT) paralogs CBP and P300, which in turn stimulate acetylation of promoter-bound histones during the burst phase. Remarkably, histone deacetylase (HDAC) inhibitors seem to potentiate CREB activity by prolonging Ser133 phosphorylation in response to cAMP stimulus, suggesting a potential role for HDAC complexes in silencing CREB activity. Here we show that HDAC1 associates with and blocks Ser133 phosphorylation of CREB during pre-stimulus and attenuation phases of the cAMP response. HDAC1 promotes Ser133 dephosphorylation via a stable interaction with PP1, which we detected in co-immunoprecipitation and co-purification studies. These results illustrate a novel mechanism by which signaling and chromatin-modifying activities act coordinately to repress the activity of a phosphorylation-dependent activator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available