4.5 Article

Exercise training alters length dependence of contractile properties in rat myocardium

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 94, Issue 3, Pages 1137-1144

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00565.2002

Keywords

cardiac myocytes; calcium sensitivity; endurance training; sarcomere length

Funding

  1. NHLBI NIH HHS [HL-61410] Funding Source: Medline

Ask authors/readers for more resources

Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca2+, and this Ca2+ sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca2+ concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 mum). We found an increased sarcomere length dependence of both maximal tension and pCa(50) (the Ca2+ concentration giving 50% of maximal tension) in T compared with C myocytes. The DeltapCa(50) between the long and short sarcomere length was 0.084 +/- 0.023 (mean +/- SD) in myocytes from C hearts compared with 0.132 +/- 0.014 in myocytes from T hearts (n = 50 myocytes per group). The Deltamaximal tension was 5.11 +/- 1.42 kN/m(2) in C myocytes and 9.01 +/- 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available