4.5 Article

Acoustic properties of sediments saturated with gas hydrate, free gas and water

Journal

GEOPHYSICAL PROSPECTING
Volume 51, Issue 2, Pages 141-157

Publisher

WILEY
DOI: 10.1046/j.1365-2478.2003.00359.x

Keywords

-

Ask authors/readers for more resources

We obtain the wave velocities and quality factors of gas-hydrate-bearing sediments as a function of pore pressure, temperature, frequency and partial saturation. The model is based on a Biot-type three-phase theory that considers the existence of two solids (grains and gas hydrate) and a fluid mixture. Attenuation is described with the constant-Q model and viscodynamic functions to model the high-frequency behaviour. We apply a uniform gas/water mixing law that satisfies Wood's and Voigt's averages at low and high frequencies, respectively. The acoustic model is calibrated to agree with the patchy-saturation theory at high frequencies (White's model). Pressure effects are accounted by using an effective stress law for the dry-rock moduli and permeabilities. The dry-rock moduli of the sediment are calibrated with data from the Cascadia margin. Moreover, we calculate the depth of the bottom simulating reflector (BSR) below the sea floor as a function of sea-floor depth, geothermal gradient below the sea floor, and temperature at the sea floor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available