4.7 Article Proceedings Paper

A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes

Journal

MECHANICS OF MATERIALS
Volume 35, Issue 3-6, Pages 193-215

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0167-6636(02)00270-3

Keywords

crystal elasticity; quasicontinuum; born rule; exponential map; membrane; carbon nanotubes

Ask authors/readers for more resources

A finite deformation hyper-elastic membrane theory based on inter-atomic potentials for crystalline films composed of a single atomic layer is developed. For this purpose, an extension of the standard Born rule that exploits the differential geometry concept of the exponential map is proposed to deal with the curvature of surfaces. The exponential map is approximated locally and strain measures based on the stretch and the curvature of the membrane arise. The methodology is first particularized to atomic chains in two dimensions, and then to graphene sheets. A reduced model for the transverse mechanics of carbon nanotubes is developed in detail. This model is a hyper-elastic constrained membrane which fully exploits the symmetry of the transverse deformation. Additionally, a continuum version of the non-bonded interactions is provided, The continuum model is discretized using finite elements and very good agreement with molecular mechanics simulations is obtained. Finally, several simulations illustrate the strong effect of the van der Waals interactions in the transverse deformation of carbon nanotubes. (C) 2002 Elsevier Science Ltd, All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available