4.1 Article

Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus

Journal

JOURNAL OF MORPHOLOGY
Volume 255, Issue 3, Pages 279-300

Publisher

WILEY
DOI: 10.1002/jmor.10062

Keywords

functional anatomy; marsupial; myology; vertebrae

Ask authors/readers for more resources

In this study, the axial skeletons of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus, were analyzed functionally and compared to that of six South American and three Australian species of extant marsupials. In the case of the South American opossums, myological data of the epaxial musculature were collected and analyzed and osteologicalmyological associations were related to locomotor behavior. Various features of the vertebral column that relate to diet or to locomotor or postural patterns were pointed out. These features include: the craniocaudal development of the neural process of the axis; the position of the anticlinal vertebra; the morphology of the neural processes of the thoracolumbar vertebrae (orientation, length, and craniocaudal width); the length, orientation, and curvature of the transverse processes of the lumbar vertebrae; and the length and robustness of the caudal vertebrae. In both fossil forms the vertebral column is mobile and allows a great range of flexion and extension of the spine, more so than in most of the living didelphids. It is emphasized here that the analysis of the axial skeleton complements and improves the conclusions provided by the forelimb and hindlimb analyses. It is proposed that Mayulestes and Pucadelphys represent an ancestral morphotype suggesting that the generalized type of locomotion of Paleocene marsupials was partly terrestrial with some climbing ability. J. Morphol. 255:279-300, 2003. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available