4.3 Article

Survival and extinction in cyclic and neutral three-species systems

Journal

EUROPEAN PHYSICAL JOURNAL E
Volume 10, Issue 3, Pages 241-248

Publisher

SPRINGER
DOI: 10.1140/epje/i2002-10112-3

Keywords

-

Ask authors/readers for more resources

We study the ABC model (A + B --> 2B B + C --> 2C, C + A --> 2A), and its counterpart: the three-component neutral drift model (A + B --> 2.4 or 2B, B + C --> 2B or 2C, C + A --> 2C or 2A.) In the former case. the mean-field approximation exhibits cyclic behaviour with an amplitude determined by the initial condition. When stochastic phenomena are taken into account the amplitude of oscillations will drift and eventually one and then two of the three species will become extinct. The second model remains stationary for all initial conditions in the mean-field approximation, and drifts when stochastic phenomena are considered. We analyzed the distribution of first extinction times of both models by simulations of the master equation, and from the point of view of the Fokker-Planck equation. Survival probability vs. time plots suggest an exponential decay. For the neutral model the extinction rate is inversely proportional to the system size, while the cyclic model exhibits anomalous behaviour for small system sizes. In the large system size limit the extinction times for both models will be the same. This result is compatible with the smallest eigenvalue obtained from the numerical solution of the Fokker-Planck equation. We also studied the behaviour of the probability distribution. The exponential decay is found to be robust against certain changes, such as the three reactions having different rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available