4.8 Article

MG63 osteoblastic cell adhesion to the hydrophobic surface precoated with recombinant osteopontin fragments

Journal

BIOMATERIALS
Volume 24, Issue 6, Pages 1059-1066

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(02)00439-8

Keywords

recombinant osteopontin; hydrophobic surface; biomaterial; osteoblast; cell signaling

Ask authors/readers for more resources

The hydrophobicity of biomaterials has been recognized as a limitation to the adequate function of anchorage-dependent cells when hydrophobic biomaterials are used for tissue engineering. This is due to flawed solid-state signals from cell adhesion. In this study, a recombinant osteopontin (rOPN17-169) fragment containing the cell adhesion motifs was expressed in E coli and was precoated on the hydrophobic surface prior to osteoblastic MG63 cell culture. Precoating the hydrophobic surface with rOPN17-169 improved osteoblastic cell adhesion, which was blocked by soluble RGDS. The adhesion of MG63 cells to rOPN17-169 precoated surface-activated mitogen-activated protein kinases (MAPK) such as extracellular signal-receptor kinase 1/2, p38, and c-Jun N-terminal kinase (JNK). In addition, p38 MAPK was activated in response to a soluble factor of transforming growth factor-beta in the cells adhered to the hydrophobic surface via rOPN17-169. This suggests that rOPN17-169 precoated on the hydrophobic surface can allow osteoblastic cells to generate adhesion signals sufficient for cell adhesion, MAPK activation, and the cytokine activation of osteoblastic cells. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available