4.6 Article

3-D microstructuring inside photosensitive glass by femtosecond laser excitation

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 76, Issue 5, Pages 857-860

Publisher

SPRINGER
DOI: 10.1007/s00339-002-1937-z

Keywords

-

Ask authors/readers for more resources

We show that a femtosecond laser enables us to produce true three-dimensional (3-D) microstructures embedded in a photosensitive glass, which has superior properties of transparency, hardness and chemical and thermal resistances. The photosensitivity arises from the cerium in the glass. After exposure to a focused laser beam, latent images are written. Modified regions are developed by a post-baking process and then preferentially etched away in a 10% dilute solution of hydrofluoric acid at room temperature. We have measured the critical dose for modification of the photosensitive glass, and fabricated 3-D microstructures with microcells and hollow microchannels embedded in the glass based on the critical dose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available