4.7 Article

Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes

Journal

ARCHIVES OF TOXICOLOGY
Volume 77, Issue 3, Pages 138-144

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00204-002-0428-5

Keywords

tributyltin; triphenyltin; in vitro metabolism; hepatic microsome; human

Categories

Ask authors/readers for more resources

Tributyltin and triphenyltin are metabolized by cytochrome P-450 system enzymes, and their metabolic fate may contribute to the toxicity of the chemicals. In the current study, the in vitro metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes was investigated to elucidate the metabolic competence for these compounds in humans. The metabolic reaction using microsome-NADPH system that is usually conducted was not applicable to in vitro metabolism of organotins, especially triphenyltin. We therefore examined the effects of dithiothreitol (DTT), one of the antioxidants for sulfhydryl groups, to determine the in vitro metabolism of tributyltin and triphenyltin. As a result, the treatment with 0.1 mM DTT in vitro increased the activity of the microsomal monooxygenase system for metabolism of tributyltin as well as triphenyltin; the total yield of tributyltin and triphenyltin metabolites as tin increased, respectively, by approximately 1.8 and 8.9 times for rat, 2.1 and 1.2 times for hamster, and 1.6 and 1.5 times for human. It is suggested that the organotins directly inactivate cytochrome P-450 because of the interaction with critical sulfhydryl groups of the hemoprotein. We confirmed the utility of this in vitro metabolic system using DTT in the hepatic microsomes of phenobarbital (PB)-pretreated and untreated hamsters. Thus, the in vitro metabolic system described here was applied to a comparative study of the metabolism of organotins in rats, hamsters and humans. Tributyltin was metabolized more readily than triphenyltin in all the species. In humans, the in vitro metabolic pattern resembled that of hamsters, which were susceptible to in vivo triphenyltin toxicity because of incompetent metabolism. It is possible that the hamster is a qualitatively and quantitatively suitable animal model for exploring the influence of tributyltin and triphenyltin in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available