4.0 Article

Attenuation of autoimmune disease in Fas-deficient mice by treatment with a cytotoxic benzodiazepine

Journal

ARTHRITIS AND RHEUMATISM
Volume 48, Issue 3, Pages 757-766

Publisher

WILEY
DOI: 10.1002/art.10968

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI-47450] Funding Source: Medline
  2. NIGMS NIH HHS [GM-42168, GM-50353] Funding Source: Medline

Ask authors/readers for more resources

Objective. Elimination of autoreactive cells relies on Fas-dependent activation-induced cell death mechanisms, an important component of peripheral tolerance. Defects in Fas or its cognate ligand lead to inefficient activation-induced cell death and are specific causes of lymphoproliferative and autoimmune diseases. The present study was undertaken to investigate a novel 1,4-benzodiazepine (Bz-423) that induces apoptosis and limits autoimmune disease in NZB/NZW mice, to determine its activity against lupus-like disease associated with defective Fas expression. We investigated the Fas-dependence of its cytotoxic actions, its therapeutic potential in mice deficient in Fas, and its therapeutic mechanism of action. Methods. Primary lymphocytes isolated from Fas-deficient MRL/MpJ-Fas(lpr) (MRL-lpr) mice were tested for sensitivity to Bz-423. Bz-423 was administered to MRL-lpr mice for short (1-week) or long (14-week) periods, and its effects on cell survival were determined along with measures of nephritis, arthritis, antibody titers, and Th subpopulations. BALB/c mice were similarly treated to determine if Bz-423 alters normal immune functions in vivo. Results. Administration of Bz-423 to MRL-lpr mice significantly reduced autoimmune disease including glomerulonephritis and arthritis. Treatment was associated with decreases in CD4+ T cells and an alteration in the Th1/Th2 balance. At the therapeutic dosage, Bz-423 did not interfere with normal T and B cell responses in BALB/c mice, suggesting that this agent is not globally immunosuppressive. Conclusion. Bz-423 is a novel immunomodulatory agent that is active against disease even in the context of defective Fas signaling. It is a leading compound for further investigation into the development of selective therapies for lupus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available