4.6 Article Proceedings Paper

Studies of heteroepitaxial growth of diamond

Journal

DIAMOND AND RELATED MATERIALS
Volume 12, Issue 3-7, Pages 241-245

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0925-9635(02)00287-X

Keywords

single crystal growth; heteroepitaxy; nucleation; microstructure

Ask authors/readers for more resources

Large-scale heteroepitaxial growth of diamond depends critically on the development of a suitable lattice-matched substrate system. Oxide substrates, notably MgO and SrTiO3, on which thin epitaxial films of iridium serve as a nucleation layer for diamond have already shown considerable promise. We describe here improvements in the growth of single crystal diamond by low-pressure microwave plasma-enhanced CVD. Oxide substrates with flat, low-index surfaces form the initial basis for the process. Iridium was deposited on heated substrates in a UHV electron-beam evaporation system resulting in epitaxial films, typically 150-300 nm thick, with Ir (10 0) parallel to the surface of all substrates as confirmed by X-ray and electron backscattering diffraction. Following Ir deposition, the samples were transferred to a CVD reactor where a bias-enhanced nucleation step induced a dense condensate that completely covered the Ir surface. Uniform nucleation densities of order 10(12) cm- 2 were observed. Interrupted growth studies, carried out at intervals from seconds to minutes subsequent to terminating the nucleation step, revealed a rapid coalescence of grains. One hour of growth resulted in a smooth, nearly featureless, (0 0 1) diamond film. For extended growth runs, slabs of diamond were grown with thickness as great as 38 mum and lateral dimensions near 4 mm. The crystals were transparent in visible light and cleaved on (1 1 1) planes along (1 10) directions, similar to natural diamond. Of particular significance is the successful use of sapphire as an underlying substrate. Its high crystalline perfection results in epitaxial Ir films with X-ray linewidths comparable to those grown on SrTiO3. However, Al2O3 possesses superior interfacial stability at high temperatures in vacuum or in a hydrogen plasma with a better thermal expansivity match to diamond. Since sapphire is available as relatively inexpensive large diameter substrates, these results suggest that wafer-scale growth of heteroepitaxial diamond should be feasible in the near future. (C) 2002 Elsevier Science B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available