4.4 Article

Loss of protooncogene c-myc function impedes G1 phase progression both before and after the restriction point

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 14, Issue 3, Pages 823-835

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E02-10-0649

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [R01 GM041690, GM-41690] Funding Source: Medline

Ask authors/readers for more resources

c-myc is an important protooncogene whose misregulation is believed to causally affect the development of numerous human cancers. c-myc null rat fibroblasts are viable but display a severe (two- to threefold) retardation of proliferation. The rates of RNA and protein synthesis are reduced by approximately the same factor, whereas cell size remains unaffected. We have performed a detailed kinetic cell cycle analysis of c-myc(-/-) cells by using several labeling and synchronization methods. The majority of cells (>90%) in asynchronous, exponential phase c-myc(-/-) cultures cycle continuously with uniformly elongated cell cycles. Cell cycle elongation is due to a major lengthening of G, phase (four- to fivefold) and a more limited lengthening of G(2) phase (twofold), whereas S phase duration is largely unaffected. Progression from mitosis to the G1 restriction point and the subsequent progression from the restriction point into S phase are both drastically delayed. These results are best explained by a model in which c-Myc directly affects cell growth (accumulation of mass) and cell proliferation (the cell cycle machinery) by independent pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available