4.5 Article

Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes

Journal

PHARMACEUTICAL RESEARCH
Volume 20, Issue 3, Pages 360-367

Publisher

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1022639701388

Keywords

HPMA copolymer conjugates; epitope; CD21 receptor; binding affinity; cytotoxicity; lymphocytes

Funding

  1. NCI NIH HHS [CA88047] Funding Source: Medline

Ask authors/readers for more resources

Purpose. Studies on the recognition of epitopes presented on a template peptide showed the potential of nonapeptide-related sequences to act as biorecognition sites for the B-cell CD21 receptor. This study was intended to evaluate the capability of three epitope sequences to mediate specific cell binding and to enhance the cytotoxicity of HPMA copolymer conjugates. Methods. HPMA copolymer conjugates were synthesized containing three different epitopes at various contents and either a fluorescent marker or doxorubicin (DOX). The binding and cytotoxicity of the conjugates to CD21(+) Raji B cells and CD21(-) HSB-2 T cells were evaluated. Results. The epitope-containing conjugates were found to bind to Raji cells at different apparent affinities depending on epitope structure and content. The conjugates generally possessed higher affinities for Raji cells than for HSB-2 cells. Targeted HPMA copolymer-DOX conjugates exhibited higher cytotoxicities than the nontargeted conjugate, likely indicative of enhanced internalization by receptor-mediated endocytosis. HSB-2 cells were more sensitive to both free and polymer-bound DOX than Raji cells; however, the enhancement of cytotoxicity of the conjugates by incorporation of epitopes was more pronounced for Raji cells. Conclusions. The results verified the concept of using receptor-binding epitopes as targeting moieties in HPMA copolymer conjugates for the delivery of anticancer drugs to lymphoma cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available