4.7 Article

Image registration via level-set motion: Applications to atlas-based segmentation

Journal

MEDICAL IMAGE ANALYSIS
Volume 7, Issue 1, Pages 1-20

Publisher

ELSEVIER
DOI: 10.1016/S1361-8415(02)00063-4

Keywords

registration; level-set method; curve evolution; atlas; segmentation

Funding

  1. NCRR NIH HHS [RF01 RR 13197] Funding Source: Medline

Ask authors/readers for more resources

Image registration is an often encountered problem in various fields including medical imaging, computer vision and image processing. Numerous algorithms for registering image data have been reported in these areas. In this paper, we present a novel curve evolution approach expressed in a level-set framework to achieve image intensity morphing and a simple non-linear PDE for the corresponding coordinate registration. The key features of the intensity morphing model are that (a) it is very fast and (b) existence and uniqueness of the solution for the evolution model are established in a Sobolev space as opposed to using viscosity methods. The salient features of the coordinate registration model are its simplicity and computational efficiency. The intensity morph is easily achieved via evolving level-sets of one image into the level-sets of the other. To explicitly estimate the coordinate transformation between the images, we derive a non-linear PDE-based motion model which can be solved very efficiently. We demonstrate the performance of our algorithm on a variety of images including synthetic and real data. As an application of the PDE-based motion model, atlas based segmentation of hippocampal shape from several MR brain scans is depicted. In each of these experiments, automated hippocampal shape recovery results are validated via manual 'expert' segmentations. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available