4.4 Article

The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions

Journal

JOURNAL OF BACTERIOLOGY
Volume 185, Issue 5, Pages 1701-1704

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.5.1701-1704.2003

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [GM56420] Funding Source: Medline

Ask authors/readers for more resources

A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show that a dam mutant has an increased sensitivity to hydrogen peroxide treatment that can be suppressed by mutations that inactivate MMR. In a dam mutant, MMR is not targeted to newly replicated DNA strands and therefore mismatches are converted to single- and double-strand DNA breaks. Thus, base pairs containing oxidized bases will be converted to strand breaks if they are repaired by MMR. This is demonstrated by the increased peroxide sensitivity of a dam mutant and the finding that the sensitivity can be suppressed by mutations inactivating NIMR. We demonstrate further that this repair activity results from NIMR recognition of base pairs containing 8-oxoguanine (8-oxoG) based on the finding that overexpression of the MutM oxidative repair protein, which repairs 8-oxoG, can suppress the mutH-dependent increase in transversion mutations. These findings demonstrate that MMR has the ability to prevent oxidative mutagenesis either by removing 8-oxoG directly or by removing adenine misincorporated opposite 8-oxoG or both.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available