4.7 Article

Tyrosine-phosphorylated and nonphosphorylated isoforms of α-dystrobrevin:: roles in skeletal muscle and its neuromuscular and myotendinous junctions

Journal

JOURNAL OF CELL BIOLOGY
Volume 160, Issue 5, Pages 741-752

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200209045

Keywords

dystrobrevin; dystrophin; muscular dystrophy; myotendinous junction; neuromuscular junction

Categories

Ask authors/readers for more resources

alpha-Dystrobrevin (DB), a cytoplasmic component of the L-dystrophin-glycoprotein complex, is found throughout the sarcolemma of muscle cells. Mice lacking alphaDB exhibit muscular dystrophy, defects in maturation of neuromuscular junctions (NMJs) and, as shown here, abnormal myotendinous junctions (MTJs). In normal muscle, alternative splicing produces two main alphaDB isoforms, alphaDB1 and alphaDB2, with common NH2-terminal but distinct COOH-terminal domains. alphaDB1, whose COOH-terminal extension can be tyrosine phosphorylated, is concentrated at the NMJs and MTJs. alphaDB2, which is not tyrosine phosphorylated, is the predominant isoform in extrajunctional regions, and is also present at NMJs and MTJs. Transgenic expression of either isoform in alphaDB(-/-) mice prevented muscle fiber degeneration; however, only alphaDB1 completely corrected defects at the NMJs (abnormal acetylcholine receptor patterning, rapid turnover, and low density) and MTJs (shortened junctional folds). Site-directed mutagenesis revealed that the effectiveness of alphaDB1 in stabilizing the NMJ depends in part on its ability to serve as a tyrosine kinase substrate. Thus, alphaDB1 phosphorylation may be a key regulatory point for synaptic remodeling. More generally, alphaDB may play multiple roles in muscle by means of differential distribution of isoforms with distinct signaling or structural properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available