4.6 Article

DNA purification by triple-helix affinity precipitation

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 81, Issue 5, Pages 535-545

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/bit.10497

Keywords

downstream processing; lower critical solution temperature; plasmid DNA; PNIPAM; precipitation; thermoresponsive polymer; triple-helix affinity

Ask authors/readers for more resources

Recent advances in DNA-based medicine (gene therapy, genetic vaccination) have intensified the necessity for pharmaceutical-grade plasmid DNA purification at comparatively large scales. In this contribution triple-helix affinity precipitation is introduced for this purpose. A short, single-stranded oligonucleotide sequence (namely (CTT)(7)), which is capable of recognizing a complementary sequence in the double-stranded target (plasmid) DNA, is linked to a thermoresponsive N-isopropylacrylamide oligomer to form a so-called affinity macroligand (AML). At 4degreesC, i.e., below its critical solution temperature, the AML binds specifically to the target molecule in solution; by raising the temperature to 40degreesC, i.e., beyond the critical solution temperature of the AML, the complex can be precipitated quantitatively. After redissolution of the complex at lower temperature, the target DNA can be released by a pH shift to slightly alkaline conditions (pH 9.0). Yields of highly pure (plasmid) DNA were routinely between 70% and 90%. Non-specific co-precipitation of either the target molecule by the non-activated AML precursor or of contaminants by the AML were below 7% and presumably due to physical entrapment of these molecules in the wet precipitate. Ligand efficiencies were at least 1 order of magnitude higher than in triple-helix affinity chromatography. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available