4.8 Article

Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells

Journal

NEURON
Volume 37, Issue 5, Pages 813-819

Publisher

CELL PRESS
DOI: 10.1016/S0896-6273(03)00093-X

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [NS34309] Funding Source: Medline

Ask authors/readers for more resources

The Lurcher mutation transforms the GRID2 receptor into a constitutively opened channel. In Lurcher heterozygous mice, cerebellar Purkinje cells are permanently depolarized, a characteristic that has been thought to be the primary cause of their death, which occurs from the second postnatal week onward. The more dramatic phenotype of Lurcher homozygotes is thought to be due to a simple gene dosage effect of the mutant allele. We have analyzed the phenotype of Lurcher/hotfoot heteroallelic mutants bearing only one copy of the Lurcher allele and no wild-type Grid2. Our results show that the absence of wild-type GRID2 receptors in these heteroallelic mutants induces an early and massive Purkinje cell death that is correlated with early signs of autophagy. This neuronal death is independent of depolarization and can be explained by the direct activation of autophagy by Lurcher GRID2 receptors through the recently discovered signaling pathway formed by GRID2, n-PIST, and Beclin1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available