4.7 Article

Engineered fibronectin type III domain with a RGDWXE sequence binds with enhanced affinity and specificity to human αvβ3 integrin

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 326, Issue 5, Pages 1475-1488

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00082-2

Keywords

phage display; scaffold; fibronectin type III domain; integrin; RGD

Funding

  1. NIAID NIH HHS [T32 AI07362] Funding Source: Medline
  2. NIGMS NIH HHS [R29-GM 55042] Funding Source: Medline

Ask authors/readers for more resources

Fibronectin is an extracellular matrix protein with broad binding specificity to cell surface receptors, integrins. The tenth fibronectin type III domain (FNfn10) is a small, autonomous domain of fibronectin containing the. RGE sequence that is directly involved in integrin binding. However, in isolation FNfn10 only weakly bind to integrins. We reasoned that high-affinity and high-specificity variants of FNfn10 to a particular integrin could be engineered by optimizing residues surrounding the integrin-binding RGD sequence in the flexible FG loop. Affinity maturation of FNfn10 to alphavbeta3 integrin, an integrin up-regulated in angiogenic endothelial cells and in some metastatic tumor cells, yielded alphavbeta3-binding FNfn10 mutants with a novel RGDWXE consensus sequence. We characterized one of the RGDWXE-modified clones, FNfn10-3JCLI4, as purified protein. FNfn10-3JCLI4 binds with high affinity and specificity to purified alphavbeta3 integrin. Alanine scanning mutagenesis suggested that both the tryptophan and glutamic acid residues following the RGD sequence are required for maximal affinity and specificity for alphavbeta3. FNfn10-3JCLI4 specifically stained alphavbeta3-positive cells as detected with flow cytometry and it inhibited alphavbeta3-dependent cell adhesion. As with the anti-alphavbeta3 antibody LM609, FNfn10-3JCLI4 can interfere with in vitro capillary formation. Taken together, these data show that FNfn10-3JCLI4 is a specific, high-affinity alphavbeta3-binding protein that can inhibit alphavbeta3-dependent cellular processes similar to an anti-alphavbeta3 monoclonal antibody. These properties, combined with the small, monomeric, cysteine-free and highly stable structure of FNfn10-3JCLI4, may make this protein useful in future applications involving detection and targeting of alphavbeta3-positive cells. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available