4.7 Article

Multidimensional calculation of time-resolved photoelectron angular distributions: The internal conversion dynamics of pyrazine

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 118, Issue 10, Pages 4432-4443

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1536981

Keywords

-

Ask authors/readers for more resources

We present the first calculation of time-resolved photoelectron differential cross sections for a polyatomic molecule. The calculation is based on a nonperturbative quantum mechanical theory that accounts exactly for rotations and vibrations and describes the electronic dynamics within a density functional approach. Application is made to study the dynamics of a radiationless transition, as probed by time-resolved photoelectron imaging. Specifically, we consider the ultrafast S-2-->S-1 internal conversion of pyrazine, induced by a short excitation pulse and probed by a time-delayed ionization pulse. Through calculation of total ionization signals, photoelectron energy distributions and energy-integrated and -resolved photoelectron angular distributions, we explore the potential of time-resolved photoelectron imaging. By comparing several models of the ionization dynamics, we examine the extent to which time-resolved photoelectron imaging can provide a general probe of ultrafast nonradiative transitions. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available