4.8 Article

Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N2O

Journal

JOURNAL OF CATALYSIS
Volume 214, Issue 2, Pages 169-178

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0021-9517(03)00013-7

Keywords

Fe-MFI catalyst; benzene hydroxylation by N2O; catalyst acidity; catalyst coking

Ask authors/readers for more resources

Isomorphously substituted Fe-MFI zeolite catalysts with various Si/Al and/or Si/Fe ratios were synthesized and characterized by many different techniques, such as ICP, XRD, SEM, TPR, microcalorimetry, FTIR, and EPR. Under standard reaction conditions the best catalyst gave 20% benzene conversion and over 90% selectivity to phenol. For Fe-ZSM5 catalysts, addition of steam to the feed improved catalyst activity, selectivity, and durability. Phenol formed onto Fe-based sites only. Active sites could very likely be composed of oxygen-bridged, extraframework binuclear Fe redox species, charge-compensating the framework Fe3+ or Al3+ ions. Surface acidity was not responsible for activity in the main reaction, but it was heavily involved in catalyst deactivation by coking. Catalyst deactivation derived mainly from the decomposition-condensation of phenol onto acid sites; the stronger the latter, the quicker was the coking rate. (C) 2003 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available