4.8 Article

PDGF-D is a potent transforming and angiogenic growth factor

Journal

ONCOGENE
Volume 22, Issue 10, Pages 1501-1510

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206223

Keywords

PDGF; VEGF; transformation; growth factor; tumour growth; angiogenesis

Ask authors/readers for more resources

Platelet-derived growth factors (PDGFs) are important for normal tissue growth and maintenance. Overexpression of the classical PDGFs, PDGF-A and PDGF-B, has been linked to several diseases, including cancer, fibrotic disease and atherosclerosis. Recently, two novel PDGFs, PDGF-C and PDGF-D, were discovered. It has not yet been established whether PDGF-C and PDGF-D are linked to disease phenotypes like the classical PDGFs. PDGF-B, the cellular homologue of the viral simian sarcoma oncogene v-sis, is known to potently induce cellular transformation through activation of PDGF receptor (PDGFR)-beta. In this work, we have determined the transformation efficacy of PDGF-D in comparison with that of PDGF-C and PDGF-B. PDGF-D is a potent transforming growth factor for NIH/3T3 cells, and the transformed cells displayed stress fibre reorganization, increased proliferation rate, anchorage-independent growth in soft agar, ability to induce tumours in nude mice, and upregulation of vascular endothelial growth factor. Morphological analyses of the vasculatures from the PDGF-isoform-expressing tumours revealed marked differences suggesting differential signalling through the two PDGF receptors in tumour vessel development and remodelling. In summary, these results suggest that PDGF-D induce cellular transformation and promote tumour growth by accelerating the proliferation rate of the tumour cells, and by stimulation of tumour neovascularization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available