4.6 Article

Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 11, Pages 9639-9646

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M209455200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 59893] Funding Source: Medline
  2. NIGMS NIH HHS [GM62555] Funding Source: Medline

Ask authors/readers for more resources

Copper uptake at the plasma membrane and subsequent delivery to copper-dependent enzymes is essential for many cellular processes, including mitochondrial oxidative phosphorylation, free radical detoxification, pigmentation, neurotransmitter synthesis, and iron metabolism. However, intracellular levels of this nutrient must be controlled because it is potentially toxic in excess concentrations. The hCtr1 protein functions in high affinity copper uptake at the plasma membrane of human cells. In this study, we demonstrate that levels of the hCtr1 protein at the plasma membrane of HEK293 cells were reduced when cells were exposed to elevated copper. This decrease in surface hCtr1 levels was associated with an increased rate of endocytosis, and low micromolar concentrations of copper were sufficient to stimulate this process. Inhibitors of clathrin-dependent endocytosis prevented the trafficking of hCtr1 from the plasma membrane, and newly internalized hCtr1 and transferrin were co-localized. Significantly, elevated copper concentrations also resulted in the degradation of the hCtr1 protein. Our findings suggest that hCtr1-mediated copper uptake into mammalian cells is regulated by a post-translational mechanism involving copper-stimulated endocytosis and degradation of the transporter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available