4.6 Article

Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 411, Issue 2, Pages 189-195

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0003-9861(03)00003-1

Keywords

glucoamylase; Saccharomycopsis fibuligera; starch-binding domain; raw starch; primary structure; tertiary structure model

Ask authors/readers for more resources

Raw-starch-degrading glucoamylases have been known as multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain (SBD) by an O-glycosylated linker region. A molecular genetics approach has been chosen to find structural differences between two related glucoamylases, raw-starch-degrading Glm and nondegrading Glu, from the yeasts Saccharomycopsis fibuligera IFO 0111 and HUT 7212, respectively. We have found that Glm and Glu show a high primary (77%) and tertiary structure similarity. Glm, although possessing a good ability for raw starch degradation, did not show consensus amino acid residues to any SBD found in glucoamylases or other amylolytic enzymes. Raw starch binding and digestion by Glm must thus depend on the existence of a site(s) lying within the intact protein which lacks a separate SBD. The enzyme represents a structurally new type of raw-starch-degrading glucoamylase. (C) 2003 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available