4.6 Article

Temperature dependent exciton photoluminescence of bulk ZnO

Journal

JOURNAL OF APPLIED PHYSICS
Volume 93, Issue 6, Pages 3214-3217

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1545157

Keywords

-

Ask authors/readers for more resources

Temperature dependent (4.2-300 K) photoluminescence (PL) of bulk (0001)-oriented ZnO in the range of free- and bound-exciton emission is presented. Emission from several bound excitons and the free A exciton were observed from the low temperature (20 K) PL spectrum. The temperature dependence of the free-exciton peak position was fit using the Manoogian-Woolley equation and the coefficients obtained show reasonable agreement both with first-principle theoretical calculations and empirical values of the coefficients for other II-VI semiconductors. The strongest bound-exciton line with a width (full width at half maximum) of about 1 meV exhibited a thermal activation energy of approximately 14 meV, consistent with the exciton-defect binding energy. It was not observed at temperatures above 150 K. Additional analysis of this particular bound-exciton peak suggests it dissociates into a free exciton and a neutral-donor-like defect-pair complex with increasing temperature. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available