4.8 Article

Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 37, Issue 6, Pages 1122-1129

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es015566h

Keywords

-

Ask authors/readers for more resources

The role of humic acid in the transport of negatively charged colloids through porous media was examined. Adsorption of humic acid on latex colloids and silica collectors reduced the deposition of suspended particles and enhanced the reentrainment of deposited particles in porous media. These effects are considered to arise from additional electrostatic and steric contributions to the repulsive interaction energy due to the adsorption of negatively charged humic acid on both the suspended particles and the media collectors. At low ionic strength reversible deposition in shallow secondary minima is hypothesized to be the principal attachment mechanism, independent of the presence of humic acid. It is proposed that, under these solution conditions, particle deposition and reentrainment are the result of a dynamic process, in which particles are continuously captured and released from secondary minima. At higher ionic strengths, deposition may be regarded as a combination of two mechanisms: capture in the primary well and capture in the secondary minimum. Theoretical calculations of the attachment efficiency were conducted using two existing mathematical models. The first model is based on deposition in the primary well (interaction force boundary layer, IFBL), and the second model is based on the Maxwell kinetic theory and deposition in the secondary minimum (Maxwell model). Simulations conducted with the Maxwell model provide significantly better fits of the experimental results than those conducted with the IFBL model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available