4.6 Article

Tyrosine dephosphorylation and ethanol inhibition of N-methyl-D-aspartate receptor function

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 13, Pages 11020-11025

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M210167200

Keywords

-

Funding

  1. NIAAA NIH HHS [R01 AA09675] Funding Source: Medline
  2. NIGMS NIH HHS [GM07635] Funding Source: Medline

Ask authors/readers for more resources

The inhibitory effect of ethanol on N-methyl-D-aspartate receptors (NMDARs) is well documented in several brain regions. However, the molecular mechanisms by which ethanol affects NMDARs are not well understood. In contrast to the inhibitory effect of ethanol, phosphorylation of the NMDAR potentiates channel currents (Lu, W. Y., Xiong, Z. G., Lei, S., Orser, B. A., Dudek, E., Browning, M. D., and MacDonald, J. F. (1999) Nat. Neurosci. 2, 331-338). We have previously shown that protein kinase C activators induce tyrosine phosphorylation and potentiation of the NMDAR (Grosshans, D. R., Clayton, D. R., Coultrap, S. J., and Browning, M. D. (2002) Nat. Neurosci. 5, 27-33). We therefore hypothesized that the ethanol inhibition of NMDARs might be due to changes in tyrosine phosphorylation of NMDAR subunits. In support of this hypothesis, we found that tyrosine phosphorylation of both NR2A and NR2B subunits was significantly reduced following in situ exposure of hippocampal slices to 100 nM ethanol. Specifically, phosphorylation of tyrosine 1472 on NR2B was reduced 23.5%. These data suggest a possible mechanism by which ethanol may inhibit the NMDAR via activation of a tyrosine phosphatase. Electrophysiological studies demonstrated that ethanol inhibited NMDAR field excitatory postsynaptic potential slope and amplitude to a similar degree as previously reported by our laboratory and others (Schummers, J., Bentz, S., and Browning, M. D. (1997) Alcohol Clin. Exp. Res. 21, 404-408). Inclusion of bpV(phen), a potent phosphotyrosine phosphatase inhibitor, in the recording chamber prior to and during ethanol exposure significantly reduced the inhibitory effect of ethanol on NMDAR field excitatory postsynaptic potentials. Taken together, these data suggest that phosphatase-mediated dephosphorylation of NMDAR subunits may play an important role in mediating the inhibitory effects of ethanol on the N-methyl-D-aspartate receptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available