4.6 Article

Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: Demonstration by differential importation of hematogenous precursors under steady state conditions

Journal

JOURNAL OF IMMUNOLOGY
Volume 170, Issue 7, Pages 3514-3521

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.170.7.3514

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI49882, AI33741] Funding Source: Medline

Ask authors/readers for more resources

Although a variety of lymphoid and myeloid precursors can generate thymic dendritic cells (DCs) under defined experimental conditions, the developmental origin(s) of DCs in the steady state thymus is unknown. Having previously used selective combinations of normal, parabiotic, and radioablated mice to demonstrate that blood-borne prothymocytes are imported in a gated and competitive manner, we used a similar approach in this study. to investigate the importation of the hematogenous precursors of thymic DCs. The results indicate that two developmentally distinct populations of DC precursors normally enter the adult mouse thymus. The first population is indistinguishable from prothymocytes according to the following criteria: 1) inefficient (<20%) exchange between parabiotic partners; 2) gated importation by the thymus; 3) competitive antagonism for intrathymic niches; 4) temporally linked generation of thymocytes and CD8 alpha(high) DCs; and 5) absence from prothymocyte-poor blood samples. The second population differs diametrically from prothymocytes in each of these properties, and appears to enter the thymus in at least a partially differentiated state. The resulting population of DC has a CD8 alpha(-/low) phenotype, and constitutes similar to 50% of total thymic DCs. The presence of two discrete populations of DCs in the steady state thymus implies functional heterogeneity consistent with evidence implicating lymphoid DCs in the negative selection of effector thymocytes and myeloid DCs in the positive selection of regulatory thymocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available