4.2 Review

Essential Fatty Acids and the Brain

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/070674370304800308

Keywords

omega-3 fatty acids; depression; schizophrenia; mental performance; neurotransmission; prostaglandins; phospholipase A(2); polyunsaturated fatty acids

Categories

Ask authors/readers for more resources

Objective: To review the role of essential fatty acids in brain membrane function and in the genesis of psychiatric disease. Method: Medline databases were searched for published articles with links among the following key words: essential fatty acids, omega-3 fatty acids, docosahexanoic acid, eicosapentanoic acid, arachidonic acid, neurotransmission, phospholipase A(2), depression, schizophrenia, mental performance, attention-deficit hyperactivity disorder, and Alzheimer's disease. Biochemistry textbooks were consulted on the role of fatty acids in membrane function, neurotransmission, and eicosanoid formation. The 3-dimensional structures of fatty acids were obtained from the Web site of the Biochemistry Department, University of Arizona (2001). Results: The fatty acid composition of neuronal cell membrane phospholipids reflects their intake in the diet. The degree of a fatty acid's desaturation determines its 3-dimensional structure and, thus, membrane fluidity and function. The ratio between omega-3 and omega-6 polyunsaturated fatty acids (PUFAs), in particular, influences various aspects of serotoninergic and catecholaminergic neurotransmission, as shown by studies in animal models. Phospholipase A(2) (PLA(2)) hydrolyzes fatty acids from membrane phospholipids: liberated omega-6 PUFAs are metabolized to prostaglandins with a higher inflammatory potential, compared with those generated from the omega-3 family. Thus the activity of PLA(2) coupled with membrane fatty acid composition may play a central role in the development of neuronal dysfunction. Intervention trials in human subjects show that omega-3 fatty acids have possible positive effects in the treatment of various psychiatric disorders, but more data are needed to make conclusive directives in this regard. Conclusion: The ratio of membrane omega-3 to omega-6 PUFAs can be modulated by dietary intake. This ratio influences neurotransmission and prostaglandin formation, processes that are vital in the maintenance of normal brain function. (Can J Psychiatry 2003;48:195-203)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available