4.3 Article

Mechanism of rectification in inward-rectifier K+ channels

Journal

JOURNAL OF GENERAL PHYSIOLOGY
Volume 121, Issue 4, Pages 261-275

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.200208771

Keywords

polyamine; alkylamine; quaternaryammonium; block; voltage dependence

Categories

Funding

  1. NHLBI NIH HHS [HL03814] Funding Source: Medline
  2. NIGMS NIH HHS [GM55560, R01 GM055560] Funding Source: Medline

Ask authors/readers for more resources

Rectification in inward-rectifier K+ channels is caused by the binding of intracellular cations to their inner pore. The extreme sharpness of this rectification reflects strong voltage dependence (apparent valence is similar to5) of channel block by long polyamines. To understand the mechanism by which polyamines cause rectification, we examined IRK1 (Kir2.1) block by a series of bis-alkyl-amines (bis-amines) and mono-alkyl-amines (mono-amines) of varying length. The apparent affinity of channel block by both types of alkylamines increases with chain length. Mutation D172N in the second transmembrane segment reduces the channel's affinity significantly for long bis-amines, but only slightly for short ones (or for mono-amines of any length), whereas a double COOH-terminal mutation (E224G and E299S) moderately reduces the affinity for all bis-amines. The apparent valence of channel block increases from similar to2 for short amines to saturate at similar to5 for long bis-amines or at similar to4 for long monoamines. On the basis of these and other observations, we propose that to block the channel pore one amine group in all alkylamines tested binds near the same internal locus formed by the COOH terminus, while the other amine group of bis-amines, or the alkyl tail of mono-amines, crawls toward residue D172 and pushes up to 4 or 5 K+ ions outwardly across the narrow K+ selectivity filter. The strong voltage dependence of channel block therefore reflects the movement of charges carried across the transmembrane electrical field primarily by K+ ions, not by the amine molecule itself, as K+ ions and the amine blocker displace each other during block and unblock of the pore. This simple displacement model readily accounts for the classical observation that, at a given concentration of intracellular K+, rectification is apparently related to the difference between the membrane potential and the equilibrium potential for K+ ions rather than to the membrane potential itself.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available