4.7 Article

Differential expression of seven α-expansin genes during growth and ripening of pear fruit

Journal

PHYSIOLOGIA PLANTARUM
Volume 117, Issue 4, Pages 564-572

Publisher

WILEY
DOI: 10.1034/j.1399-3054.2003.00064.x

Keywords

-

Categories

Ask authors/readers for more resources

Seven cDNAs, designated PcExp1 to PcExp7 , encoding expansin homologues, were isolated from mature pear fruit and their expression profiles were investigated in ripening fruit and other tissues, and in response to ethylene. Accumulation of PcExp2 , -3, -5 and -6 mRNA increased markedly with fruit softening and then declined at the over-ripe stage. Treatment of fruit at an early ripening stage with 1-methylcyclopropene (MCP), an inhibitor of ethylene action, suppressed ethylene biosynthesis, fruit softening and the accumulation of the expansin mRNAs. Conversely, propylene treatment at the preclimacteric stage induced accumulation of the same four expansin genes, as well as ethylene production and fruit softening. The expression patterns correlated with alteration in the rate and extent of fruit softening. The abundance of PcExp1 mRNA increased at the late expanding phase of fruit development and further increased during ripening, whereas PcExp4 mRNA levels were constant throughout fruit growth and ripening. The MCP and propylene treatments had little effect on PcExp1 and PcExp4 expression. PcExp7 was expressed in young but not mature fruit. PcExp4 and PcExp6 mRNA was also detected in flowers. The accumulation of PcExp4, -5, -6 and -7 mRNA was more abundant in young growing tissues, but not in fully expanded tissues, suggesting roles for these genes in cell expansion. These results demonstrate that characteristically, multiple expansin genes show differential expression and hormonal regulation during pear fruit development and at least six expansins show overlapping expression during ripening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available