4.7 Article

Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling

Journal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume 7, Issue 2, Pages 204-223

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2003.810752

Keywords

evolutionary multiobjective optimization; genetic local search; memetic algorithms; multiobjective optimization; permutation flowshop scheduling

Ask authors/readers for more resources

This paper shows how the performance of evolutionary multiobjective optimization (EMO) algorithms can be improved by hybridization with local search. The main positive effect of the hybridization is the improvement in the convergence speed to the Pareto front. On the other hand, the main negative effect is the increase in the computation time per generation. Thus, the number of generations is decreased when the available computation time is limited. As a result, the global search ability of EMO algorithms is not fully utilized. These positive and negative effects are examined by computational experiments on multiobjective permutation flowshop scheduling problems. Results of our computational experiments clearly show the importance of striking a balance between genetic search and local search. In this paper, we first modify our former multiobjective genetic local search (MOGLS) algorithm by choosing only good individuals as initial solutions for local search and assigning an appropriate local search direction to each initial solution. Next, we demonstrate the importance of striking a balance between genetic search and local search through computational experiments. Then we compare the modified MOGLS with recently developed EMO algorithms: strength Pareto evolutionary algorithm and revised nondominated sorting genetic algorithm. Finally, we demonstrate that local search can be easily combined with those EMO algorithms for designing multiobjective memetic algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available