4.6 Article

Na+ channel inactivation:: a comparative study between pancreatic islet β-cells and adrenal chromaffin cells in rat

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 548, Issue 1, Pages 191-202

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1113/jphysiol.2002.034405

Keywords

-

Ask authors/readers for more resources

A comparative study was carried out on the inactivation of Na+ channels in two types of endocrine cells in rats, beta-cells and adrenal chromaffin cells (ACCs), using patch-clamp techniques. The beta-cells were very sensitive to hyperpolarization; the Na+ currents increased ninefold when the holding potential was shifted from -70 mV to -120 mV. ACCs were not sensitive to hyperpolarization. The half-inactivation voltages were -90 mV (rat beta-cells) and -62 mV (ACCs). The time constant for recovery from inactivation at -70 mV was 10.5 times slower in beta-cells (60 ms) than in ACCs (5.7 ms). The rate of Na+-channel inactivation at physiological resting potential was more than three times slower in beta-cells than in ACCs. Na+ influx through Na+ channels had no effect on the secretory machinery in rat beta-cells. However, these 'silent Na+ channels' could contribute to the generation of action potentials in some conditions, such as when the cell is hyperpolarized. It is concluded that the fractional availability of Na+ channels in beta-cells at a holding potential of -70 mV is about 15% of that in ACCs. This value in rat beta-cells is larger than that observed in mouse (0%), but is smaller than those observed in human or dog (90%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available