4.6 Article

Accelerated germ cell apoptosis in sex chromosome aneuploid fetal human gonads

Journal

MOLECULAR HUMAN REPRODUCTION
Volume 9, Issue 4, Pages 219-225

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molehr/gag031

Keywords

apoptosis; germ cells; human fetal testis; human fetal ovaries; Turner's syndrome; 45X; XO/XY

Ask authors/readers for more resources

The purpose of the study was to examine the occurrence of programmed cell death (apoptosis) in normal and chromosomally aneuploid testis and ovaries during the second trimester of human development. Such information may be useful in understanding normal and abnormal germ cell development and disorders associated with infertility in adult life. Apoptosis was studied by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) analysis in human fetal ovaries (n = 16) and testis (n = 14) between 9 and 23 weeks of development, in ovaries of four Turner's syndrome fetuses (45X) and in the gonad of an XO/XY fetus. In normal fetal testis, a small proportion of germ cells, Sertoli cells and Leydig cells undergo apoptosis. In normal fetal ovaries, some developing oocytes and granulosa cells were detected as TUNEL positive. Semiquantitative analysis of fetal ovaries revealed that similar to3-7% of oocytes were apoptotic. In abnormal fetal testis (XO/XY genotype). TUNEL analysis revealed that only germ cells not enclosed in seminiferous tubules undergo apoptosis. TUNEL analysis of the Turner's syndrome (45X) ovaries studied at 15 and 20 weeks of development revealed massive apoptosis of the oocytes. Nearly 50-70% of the oocytes were TUNEL positive in these ovaries. These results suggest that germ cell apoptosis is a common event occurring during development of human gonads. Chromosomal defects by some means accelerates apoptosis that probably leads to gonadal dysgenesis later in life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available