4.3 Article Proceedings Paper

Thermal stability of helium-vacancy clusters in iron

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-583X(02)01832-3

Keywords

molecular dynamics calculations; irradiation effects in solids; iron and its alloys; helium; voids (crystal defects)

Ask authors/readers for more resources

Molecular dynamics calculations were performed to evaluate the thermal stability of helium vacancy clusters (HenVm) in Fe using the Ackland Finnis-Sinclair potential, the Wilson-Johnson potential and the Ziegler-Biersack-Littmark-Beck potential for describing the interactions of Fe-Fe, Fe-He and He-He, respectively. Both the calculated numbers of helium atoms, n, and vacancies, m, in clusters ranged from 0 to 20. The binding energies of an interstitial helium atom, an isolated vacancy and a self-interstitial iron atom to a helium-vacancy cluster were obtained from the calculated formation energies of clusters. All the binding energies do not depend much on cluster size, but they primarily depend on the helium-to-vacancy ratio (n/m) of clusters. The binding energy of a vacancy to a helium-vacancy cluster increases with the ratio, showing that helium increases cluster lifetime by dramatically reducing thermal vacancy emission. On the other hand, both the binding energies of a helium atom and an iron atom to a helium-vacancy cluster decrease with increasing the ratio, indicating that thermal emission of self-interstitial atoms (SIAs) (i.e. Frenkel-pair production), as well as thermal helium emission, may take place from the cluster of higher helium-to-vacancy ratios. The thermal stability of clusters is decided by the competitive processes among thermal emission of vacancies, SIAs and helium, depending on the helium-to-vacancy ratio of clusters. The calculated thermal stability of clusters is consistent with the experimental observations of thermal helium desorption from alpha-Fe during post-He-implantation annealing. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available