4.6 Article

First-principles study of magnetism in spinel MnO2 -: art. no. 134404

Journal

PHYSICAL REVIEW B
Volume 67, Issue 13, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.134404

Keywords

-

Ask authors/readers for more resources

First-principles electronic structure methods have been used to calculate the ground state, transition temperature, and thermodynamic properties of magnetic excitations in spinel MnO2. The magnetic interactions are mapped onto a Heisenberg model whose exchange interactions are fitted to results of first-principles calculations of different spin configurations. The thermodynamics are calculated using Monte Carlo methods. The Heisenberg model gives an extremely accurate representation of the true first-principles magnetic energies. We find a critical temperature and Weiss constant significantly larger than experimental results and believe the error to come from the local spin density approximation. We predict a new magnetic ground state different from that proposed previously, but consistent with experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available