4.5 Article

Evaporation and condensational growth of liquid droplets in nonisothermal gas mixtures

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 37, Issue 4, Pages 315-324

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820300961

Keywords

-

Ask authors/readers for more resources

A theoretical study and coupled analytical model of the growth rates of a droplet in a nonisothermal gas mixture are presented. The derived model explicitly accounts for the influence of the properties of the gaseous media on the transport processes in an aerodisperse system. The Stefan flux as well as temperature and composition dependencies of the transport coefficients are accounted for simultaneously, still resulting in a convenient analytical expression. Such an expression is especially useful to use in a numerical GDE solution routine, in which much time cannot be spent in the individual physical processes. The results of previous studies are compared to our model predictions. Numerical calculations are performed for a wide range of saturation ratios for the water droplet-humid air system and compared with experimental data. The presented new model is an improvement on the existing ones, especially in cases in which the mass transfer rates are large, resulting in a nonuniform temperature field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available