4.4 Article

Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway

Journal

ARCHIVES OF MICROBIOLOGY
Volume 179, Issue 4, Pages 227-233

Publisher

SPRINGER
DOI: 10.1007/s00203-003-0519-6

Keywords

Oenococcus oeni; heterolactic fermentation; fructose; phosphoketolase pathway; NAD(P)H reoxidation; mannitol

Categories

Ask authors/readers for more resources

The heterolactic bacterium Oenococcus oeni ferments fructose by a mixed heterolactic/mannitol fermentation. For heterolactic fermentation of fructose, the phosphoketolase pathway is used. The excess NAD(P)H from the phosphoketolase pathway is reoxidized by fructose (yielding mannitol). It is shown here that, under conditions of C-limitation or decreased growth rates, fructose can be fermented by heterolactic fermentation yielding nearly stoichiometric amounts of lactate, ethanol and CO2. Quantitative evaluation of NAD(P)H-producing (phosphoketolase pathway) and -reoxidizing (ethanol, mannitol and erythritol pathways) reactions demonstrated that at high growth rates or in batch cultures the ethanol pathway does not have sufficient capacity for NAD(P)H reoxidation, requiring additional use of the mannitol pathway to maintain the growth rate. In addition, insufficient capacities to reoxidize NAD(P)H causes inhibition of growth, whereas increased NAD(P)H reoxidation by electron acceptors such as pyruvate increases the growth rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available