4.2 Article

Design for a Lithographically Patterned Bioartificial Endocrine Pancreas

Journal

ARTIFICIAL ORGANS
Volume 37, Issue 12, Pages 1059-1067

Publisher

WILEY
DOI: 10.1111/aor.12131

Keywords

Bioartificial pancreas; Diabetes; Nanotechnology; BioMEMS; Cell encapsulation therapy; Insulin

Funding

  1. Iacocca Family Foundation

Ask authors/readers for more resources

Cell encapsulation provides a means to transplant therapeutic cells for a variety of diseases including diabetes. However, due to the large numbers of cells, approximately on the order of a billion, that need to be transplanted for human diabetes therapy, adequate mass transport of nutrients such as oxygen presents a major challenge. Proof-of-concept for the design of a bioartificial endocrine pancreas (BAEP) that is optimized to minimize hypoxia in a scalable and precise architecture is demonstrated using a combination of simulations and experiments. The BAEP is composed of an array of porous, lithographically patterned polyhedral capsules arrayed on a rolled-up alginate sheet. All the important structural variables such as the capsule dimensions, pore characteristics, and spacing can be precisely engineered and tuned. Further, all cells are encapsulated within a single device with a volume not much greater than the total volume of the encapsulated cells, and no cell within the device is located more than 200m from the surrounding medium that facilitates efficient mass transport with the surroundings. Compared with gel-based encapsulation methods, our approach offers unprecedented precision and tunability of structural parameters as well as the volume of the encapsulated cells and consequently the amount of secreted insulin. Our work highlights the utility of lithography and self-assembly in the fabrication of micro- and nanostructured three-dimensional structures that simulate the function of natural endocrine organs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available