4.4 Review

The first second of the Universe

Journal

ANNALEN DER PHYSIK
Volume 12, Issue 4, Pages 220-270

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/andp.200310010

Keywords

early universe; QCD transition; dark matter

Ask authors/readers for more resources

The history of the Universe after its first second is now tested by high quality observations of light element abundances and temperature anisotropies of the cosmic microwave background. The epoch of the first second itself has not been tested directly yet; however, it is constrained by experiments at particle and heavy ion accelerators. Here I attempt to describe the epoch between the electroweak transition and the primordial nucleosynthesis. The most dramatic event in that era is the quark-hadron transition at 10 mus. Quarks and gluons condense to form a gas of nucleons and light mesons, the latter decay subsequently. At the end of the first second, neutrinos and neutrons decouple from the radiation fluid. The quark-hadron transition and dissipative processes during the first second prepare the initial conditions for the synthesis of the first nuclei. As for the cold dark matter (CDM), WIMPs (weakly interacting massive particles) - the most popular candidates for the CDM - decouple from the presently known forms of matter, chemically (freeze-out) at 10 ns and kinetically at 1 ms. The chemical decoupling fixes their present abundances and dissipative processes during and after thermal decoupling set the scale for the very first WIMP clouds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available