4.3 Review

Metabolic therapy, in the treatment of ischaemic heart disease: the pharmacology of trimetazidine

Journal

FUNDAMENTAL & CLINICAL PHARMACOLOGY
Volume 17, Issue 2, Pages 133-145

Publisher

WILEY
DOI: 10.1046/j.1472-8206.2003.00154.x

Keywords

angina; coronary artery disease; diabetes; glucose; lactate; myocardium

Ask authors/readers for more resources

The primary result of myocardial ischaemia is reduced oxygen consumption and adenosine triphosphate (ATP) formation in the mitochondria, and accelerated anaerobic glycolysis, lactate accumulation and cell acidosis. Classic pharmacotherapy for demand-induced ischaemia is aimed at restoring the balance between ATP synthesis and breakdown by increasing the oxygen delivery (i.e. with long acting nitrates or Ca2+ channel antagonist) or by decreasing cardiac power by reducing blood pressure and heart rate (i.e. with beta-blocker or Ca2+ channel antagonist). Animal studies show that fatty acids are the primary mitochondrial substrate during moderate severity myocardial ischaemia, and that they inhibit the oxidation of carbohydrate and drive the conversion of pyruvate to lactate. Drugs that partially inhibit myocardial fatty acid oxidation increase carbohydrate oxidation, which results in reduced lactate production and a higher cell pH during ischaemia. Trimetazidine (1-[2,3,4-trimethoxibenzyl]-piperazine) is the first and only registered drug in this class, and is available in. over 90 countries world-wide. Trimetazidine selectively inhibits the fatty acid beta-oxidation enzyme 3-keto-acyl-CoA dehydrogenase (3-KAT), and is devoid of any direct haemodynamic effects. In double-blind placebo-controlled trials trimetarzidine significantly improved symptom-limited exercise performance in stable angina patients when used either as monotherapy or in combination with beta-blockers or Ca2+ channel antagonists. Given available evidence, trimetazidine is an excellent alternative to classic haemodynamic agents. and is unique in its ability to reduce symptoms of angina when used in patients resistant to a haemodynamic treatment as vasodilators, beta-blockers or Ca2+ channel antagonists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available