4.7 Article

Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase

Journal

EMBO REPORTS
Volume 4, Issue 4, Pages 405-411

Publisher

WILEY
DOI: 10.1038/sj.embor.embor797

Keywords

-

Ask authors/readers for more resources

Secretory and membrane N-linked glycoproteins undergo folding and oligomeric assembly in the endoplasmic reticulum with the aid of a folding mechanism known as the calnexin cycle. UDP-glucose glycoprotein:glucosyltransferase (UGGT) is the sensor component of the calnexin cycle, which recognizes these glycoproteins when they are incompletely folded, and transfers a glucose residue from UDP-glucose to N-linked Man9-GlcNAc2 glycans. To determine how UGGT recognizes incompletely folded glycoproteins, we used purified enzyme to glucosylate a set of Man9-GlcNAc2 glycopeptide substrates in vitro, and determined quantitatively the glucose incorporation into each glycan by mass spectrometry. A ranked order of glycopeptide specificity was found that provides the criteria for the recognition of substrates by UGGT. The preference for amino-acid residues close to N-linked glycans provides criteria for the recognition of glycopeptide substrates by UGGT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available