4.5 Article

Geochemical signature of formation waters associated with coalbed methane

Journal

AAPG BULLETIN
Volume 87, Issue 4, Pages 667-676

Publisher

AMER ASSOC PETROLEUM GEOLOGIST
DOI: 10.1306/10300201079

Keywords

-

Ask authors/readers for more resources

Formation waters associated with coalbed methane have a common chemical character that can be an exploration tool, regardless of formation lithology or age. Effectively devoid of sulfate, calcium, and magnesium, the waters contain primarily sodium and bicarbonate and, where influenced by water of marine association, also contain chloride. The distinct geochemical signature evolves through the processes of biochemical reduction of sulfate, enrichment of bicarbonate, and precipitation of calcium and magnesium. Cation exchange with clays may also deplete the dissolved calcium and magnesium, but is not prerequisite. Low sulfate/bicarbonate ratios characterize these waters and are also common but less pronounced with occurrences of conventional oil and gas. Waters rich in sulfate, calcium, and magnesium occur in many coalbed aquifers but are not found in association with methane. Users of total dissolved solids data should ensure that the values reflect adjustments of bicarbonate concentrations to simulate evaporation residues. Results that erroneously sum the entire bicarbonate content can be far too high in these bicarbonate-rich waters, thereby exacerbating the issues of disposal. Evaluations of prospects and choices of exploration targets can be enhanced by an added focus on the geochemical signature that should be expected in association with methane. Knowledge of the geochemical signature may also be useful in the commonly protracted testing of wells. The appearance of high sulfate concentrations in water analyses can justify early curtailment of test pumping and can prompt the siting of subsequent drill holes farther from areas of recharge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available