4.8 Review

Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine

Journal

WATER RESEARCH
Volume 37, Issue 7, Pages 1469-1487

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(02)00458-X

Keywords

ozone; disinfection; disinfection by-products; bromate; chlorate; iodate

Ask authors/readers for more resources

Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activation energy for the inactivation of bacteria is in the same order as most chemical reactions (35-50 kJ mol(-1)), whereas it is much higher for the inactivation of protozoa (80 kJ mol(-1)). This requires significantly higher ozone exposures at low temperatures to get a similar inactivation for protozoa. Even for the inactivation of resistant microorganisms, OH radicals only play a minor role. Numerous organic and inorganic ozonation disinfection/oxidation by-products have been identified. The by-product of main concern is bromate, which is formed in bromide-containing waters. A low drinking water standard of 10 mug l(-1) has been set for bromate. Therefore, disinfection and oxidation processes have to be evaluated to fulfil these criteria. In certain cases, when bromide concentrations are above about 50 mug l(-1), it may be necessary to use control measures to lower bromate formation (lowering of pH, ammonia addition). Iodate is the main by-product formed during ozonation of iodidecontaining waters. The reactions involved are direct ozone oxidations. Iodate is considered non-problematic because it is transformed back to iodide endogenically. Chloride cannot be oxidized during ozonation processes under drinking water conditions. Chlorate is only formed if a preoxidation by chlorine and/or chlorine dioxide has occured. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available