4.4 Article

Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation

Journal

Publisher

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.20.000695

Keywords

-

Categories

Ask authors/readers for more resources

We present a detailed time-domain analysis of a promising nonlinear optical device consisting of alternating layers of nonlinear materials with oppositely signed Kerr coefficients. We study propagation of nonsolitonic (Gaussian) pulses through the device, whose transmittance characteristics point to potential uses in all-optical switches and limiters. If the optical structure has no linear built-in grating, the pulse experiences a nonsolitonic (amplitude-decaying) propagation in the structure, which exhibits limiting properties depending on the bandwidth of the pulse. We elucidate the conditions under which double imaging occurs within the dynamically formed grating under the pulse propagation. In the presence of the linear out-of-phase grating, we observe strong envelope compression and reshaping of a Gaussian pulse, resulting in stable high-amplitude, multiple-peak oscillations as it propagates through the nonlinear optical structure. (C) 2003 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available