4.2 Article

Enhanced oxygen availability improves liver-specific functions of the AMC bioartificial liver

Journal

ARTIFICIAL ORGANS
Volume 32, Issue 2, Pages 116-126

Publisher

WILEY
DOI: 10.1111/j.1525-1594.2007.00500.x

Keywords

oxygen; hepatocytes; tissue engineering; acute liver failure; numerical modeling; computational fluid dynamics

Ask authors/readers for more resources

Long-term culturing of primary porcine hepatocytes (PPH) inside the Academic Medical Center (AMC)-bioartificial liver is characterized by increased anaerobic glycolysis. Recommendations to increase oxygen availability were proposed in a previous numerical study and were experimentally evaluated in this study. Original bioreactors as well as new configuration bioreactors with 2.2-fold thinner nonwoven matrix and 2-fold more capillaries were loaded with PPHs and oxygenated with different gas oxygen pressures resulting in medium pO(2) (pO(2-med)) of either 135-150 mm Hg or 235-250 mm Hg. After 6 days culturing, new configuration bioreactors with pO(2-med) of 250 mm Hg showed significantly reduced anaerobic glycolysis, 60% higher liver-specific functions, and increased transcript levels of five liver-specific genes compared to the standard bioreactor cultures. Changed bioreactor configuration and increasing pO(2-med) contributed equally to these improvements. Histological examination demonstrated small differences in cell organization. In conclusion, higher metabolic stability and liver-specific functionality was achieved by enhanced oxygen availability based on a prior modeling concept.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available