4.8 Article

Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 13, Pages 3901-3909

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja028469c

Keywords

-

Ask authors/readers for more resources

The surface ligands, generation-3 (G3) dendrons, on each semiconductor nanocrystal were globally cross-linked through ring-closing metathesis (RCM). The global cross-linking of the dendron ligands sealed each nanocrystal in a dendron box, which yielded box-nanocrystals. Although the dendron ligands coated CdSe nanocrystals (CdSe dendron-nanocrystals) were already quite stable, the stability of CdSe box-nanocrystals against chemical, photochemical, and thermal treatments were dramatically improved in comparison to that of the original dendron-nanocrystals. Furthermore, the box structure of the ligands monolayer coupled with the stable inorganic CdSe/CdS core/shell nanocrystals resulted in a class of extremely stable nanocrystal/ligands complexes. The band edge photoluminescence of the core/shell clendron-nanocrystals and box-nanocrystals were partially remained, and could be further brightened through controlled chemical oxidation or photooxidation. Practically, the stability of the box-nanocrystals is sufficient for most fundamental studies and technical applications. The box-nanocrystals may represent a general solution for the commonly encountered instability for many types of colloidal nanocrystals. The size distribution of the empty dendron boxes formed by the dissolution of the inorganic nanocrystals in concentrated HCl was very narrow. The empty boxes as new types of polymer capsules are soluble in solution, mesoporous, and with a very thin but stable peripheral. Those nanometer-sized cavities should be of interest for many purposes in the field of solution host-guest chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available