4.8 Article

Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 14, Pages 4253-4258

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0284963

Keywords

-

Funding

  1. NIDCR NIH HHS [DE 14193] Funding Source: Medline

Ask authors/readers for more resources

A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear monomethoxy-terminated PEGS were conjugated either to a single DOPA residue (mPEG-DOPA) or to the N-terminus of Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-DOPA-Lys (mPEG-MAPD), a decapeptide analogue of a protein found in Mytilus edulis adhesive plaques. Gold and titanium surfaces were modified by adsorption of mPEG-DOPA and mPEG-MAPD from solution, after which surface analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy confirmed the presence of immobilized PEG on the surface. The ability of modified surfaces to resist cell attachment was examined by culturing 3T3 fibroblasts on the surfaces for up to 14 days. Quantitative image analysis revealed that cell adhesion to mPEG-DOPA and mPEG-MAPD modified surfaces decreased by as much as 98% compared to control surfaces. Modified Ti surfaces exhibited low cell adhesion for up to 2 weeks in culture, indicating that the nonfouling properties of mPEG-DOPA and mPEG-MAPD treated surfaces persist for extended periods of time. This strategy paradoxically exploits the strong fouling characteristics of MAP analogues for antifouling purposes and may be broadly applied to medical implants and diagnostics, as well as numerous nonmedical applications in which the minimization of surface fouling is desired.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available