4.8 Article

Laser-induced hydrodynamic instability of fluid interfaces

Journal

PHYSICAL REVIEW LETTERS
Volume 90, Issue 14, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.90.144503

Keywords

-

Ask authors/readers for more resources

We report on a new class of electromagnetically driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid microjet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset P-S of the instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available