4.6 Article

Effects of bafilomycin A1: An inhibitor of vacuolar H(+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 88, Issue 6, Pages 1256-1264

Publisher

WILEY
DOI: 10.1002/jcb.10477

Keywords

bafilomycin A1; V-ATPases; endocytosis; apoptosis; RAW cells; osteoclasts

Ask authors/readers for more resources

Bafilomycin A1, a specific inhibitor of V-ATPases, is a potent inhibitor of bone resorption, but the underlying mechanisms of its action remain unclear. In this study, we investigated the effect of Bafilomycin A1 on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. Quantitative analysis by flow cytometry showed that Bafilomycin A1 increased total transferrin levels when RAW cells were exposed to labeled transferrin and decreased the total uptake of Dextran-rhodamine B, both in a dose- and time-dependent fashion, indicating that Bafilomycin influences receptor-mediated and fluid phase endocytosis in these cells. Furthermore, Bafilomycin A1 induced apoptosis of RAW cells in a dose dependent manner as evidenced by Annexin V flow cytometry. The action of Bafilomycin A1 on endocytotic events appeared to be more sensitive and occurred earlier than on its apoptosis inducing effects, suggesting that interrupting of endocytosis might be an early sign of Bafilomycin-mediated osteoclast inhibition. Semi-quantitative RT-PCR analysis showed that the gene transcripts of putative Bafilomycin A1 binding subunit, V-ATPase-subunit a3, were expressed in the preosteoclastic RAW cell line, and up-regulated during RANKL-induced osteoclastogenesis. Osteoclasts treated with Bafilomycin A1 exhibited apoptosis as well as altered cellular localization of Transferrin Alexa 647. Given that endocytosis and apoptosis are important processes during osteoclastic bone resorption, the potent effect of Bafilomycin A1 on endocytosis and apoptosis of osteoclasts and their precursor cells may in part account for Bafilomycin A1 inhibited bone resorption. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available